翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lindstedt–Poincaré method : ウィキペディア英語版
Poincaré–Lindstedt method
In perturbation theory, the Poincaré–Lindstedt method or Lindstedt–Poincaré method is a technique for uniformly approximating periodic solutions to ordinary differential equations, when regular perturbation approaches fail. The method removes secular terms—terms growing without bound—arising in the straightforward application of perturbation theory to weakly nonlinear problems with finite oscillatory solutions.〔, pp. 181–186.〕
The method is named after Henri Poincaré,〔, §123–§128.〕 and Anders Lindstedt.〔A. Lindstedt, Abh. K. Akad. Wiss. St. Petersburg 31, No. 4 (1882)〕
==Example: the Duffing equation==
The undamped, unforced Duffing equation is given by
:\ddot + x + \varepsilon\, x^3 = 0\,
for ''t'' > 0, with 0 < ''ε'' (unicode:≪) 1.〔J. David Logan. ''Applied Mathematics'', Second Edition, John Wiley & Sons, 1997. ISBN 0-471-16513-1.〕

Consider initial conditions
:x(0) = 1,\, \dot x(0) = 0.\,
A perturbation-series solution of the form ''x''(''t'') = ''x''0(''t'') + ''ε'' ''x''1(''t'') + …  is sought. The first two terms of the series are
:x(t) = \cos(t) + \varepsilon \left(\tfrac\, \left( \cos(3t) - \cos(t) \right) - \tfrac\, t\, \sin(t) \right ) + \cdots.\,
This approximation grows without bound in time, which is inconsistent with the physical system that the equation models.〔The Duffing equation has an invariant energy \scriptstyle E=\tfrac12\, \dot^2 + \tfrac12\, x^2 + \tfrac14\, \varepsilon\, x^4 = constant, as can be seen by multiplying the Duffing equation with \scriptstyle \dot and integrating with respect to time ''t''. For the example considered, from its initial conditions, is found: ''E'' = ½ + ¼ ''ε''.〕 The term responsible for this unbounded growth, called the secular term, is ''t'' sin t. The Poincaré–Lindstedt method allows for the creation of an approximation that is accurate for all time, as follows.
In addition to expressing the solution itself as an asymptotic series, form another series with which to scale time ''t'':
:\tau = \omega t,\, where \omega = \omega_0 + \varepsilon \omega_1 + \cdots.\,
For convenience, take ''ω''0 = 1 because the leading order of the solution's angular frequency is 1. Then the original problem becomes
:\omega^2\, x''(\tau) + x(\tau) + \varepsilon\, x^3(\tau) = 0\,
with the same initial conditions. Now search for a solution of the form ''x''(''τ'') = ''x''0(''τ'') + ''ε'' ''x''1(''τ'') + … . The following solutions for the zeroth and first order problem in ''ε'' are obtained:
:
\begin
x_0 &= \cos(\tau) \\
\text
x_1 &= \tfrac\, \left(\cos(3\tau)-\cos(\tau)\right) + \left( \omega_1 - \tfrac \right)\, \tau\, \sin(\tau).
\end

So the secular term can be removed through the choice: ''ω''1 = . Higher orders of accuracy can be obtained by continuing the perturbation analysis along this way. As of now, the approximation—correct up to first order in ''ε''—is
:
x(t) \approx \cos\Bigl(\left(1 + \tfrac\, \varepsilon \right)\, t \Bigr)
+ \tfrac\, \varepsilon\, \left(3 \left(1 + \tfrac\,\varepsilon\, \right)\, t \Bigr)-\cos\Bigl(\left(1 + \tfrac\,\varepsilon\, \right)\, t \Bigr)\right ). \,


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Poincaré–Lindstedt method」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.